A GUIDE FOR SHEEP AND FARM LIFE

The Shepherd

Volume 36-Number 5

May, 1991

Cats Like Wool Too!

Maternal Heterosis in Sheep

Does the Highly Sexy Ram Have a Highly Productive Mom?

Advantages of Crossbreeding in Sheep

Handpiece Maintenance Tips

General Fact Sheet on Ovine Progressive Pneumonia
Maternal Heterosis in Sheep

By M. H. Fahmy
Agriculture Canada, Lennoxville Research Station, Quebec, J1M 1Z3

Before we talk about maternal heterosis a word about heterosis as such is in order. By definition, heterosis is a term used (usually for animals, for plants the term used is hybrid vigor) to refer to the deviation observed between the performance of crosses from that of their parental breeds. To avoid bias caused by the maternal effects of the breeds, the average of the two reciprocal crosses is compared to the average of the two parental breeds. The value of heterosis can be negative, positive or zero, if the average of the two crosses is lower, higher or equal to that of the parental breeds respectively.

There are three types of heterosis, individual, paternal and maternal. The individual heterosis is associated with the individual himself; it is by how much a crossbred individual differs from the average of his two purebred parents. It is expressed in traits such as growth rate, feed efficiency, fertility, prolificacy, carcass quality and wool production, etc. Paternal heterosis is expressed in traits such as libido, sperm production and quality when a crossbred ram outperforms a purebred ram. Finally, maternal heterosis is the extra advantage a lamb receives from his crossbred dam in the form of higher milking and mothering ability as compared to a purebred dam.

What brings about heterosis? Many theories tried to explain this phenomenon and its opposite phenomenon the “inbreeding depression.” None of these theories explain fully the two phenomena. It seems that increasing heterozygosity results in heterosis and increasing homozygosity results in inbreeding depression. Heterosis depends on its magnitude on the degree of diversity between the breeds involved in the crossing, the further apart the breeds the higher the heterosis to be expected.

How can we take advantage of heterosis? The first step, of course, is to cross. In most cases, one breed is superior than the other. If the performance of the cross is not superior than the better of the two parents then there is no point of crossing because no advantage can be obtained. On the other hand, if the breeders raise the inferior parental breed, then crossing is beneficial since the cross will be certainly better than the inferior breed.

Maternal heterosis can be calculated from two sources of crossbreeding programs.

1. When crossbred and purebred parental breeds are available at the same time and mated to:
   A. Rams of a third breed (C).
   B. Rams of a genotype with 50% of genes from each of the parental breeds (F1 or F2).
   C. Each female group is mated half with rams of breed A and half with rams of breed B.

   The reason for the restriction on the sire to use is to avoid confounding the individual with the maternal heterosis. The calculating equation for maternal heterosis is:

\[ hm = \frac{(C \times AB) + (C \times BA) - (C \times A) - (C \times B)}{2^2} \]

2. Maternal heterosis can also be obtained from crossbreeding involving F1 and F2 generations. Estimates from such sources are often less accurate because of selection and/or inbreeding when generating F2 animals; this, in addition that the comparison estimates only half the heterosis and the figure has to be multiplied by 2 to get the actual value.

In the following table maternal heterosis from both sources are presented for some of the economically important traits and compared with individual heterosis estimates.

**Growth**

Maternal heterosis for birth weight and weaning weight (about 5 and 6-7% respectively) was found to be slightly higher than individual heterosis. The physiological basis of this lies in the uterine and postnatal conditions, which are apparently more favorable in crossbred than in purebred ewes.

**Reproduction**

As in the case of early lamb growth, the physiological basis of maternal heterosis for reproductive performance is different from that of individual heterosis. A reproductive increase observed in two-way crosses is mainly based on a superiority of crossbred lambs in prenatal and postnatal viability. On the other hand, superior reproductive performance of crossbred ewes is expected to be due to an increase in oestrous and gonadal activity and improved uterine as well as perinatal and postnatal conditions for embryonic and lamb survival. These differences in the physiological basis for maternal and individual heterosis are expressed in the average values of heterosis for the various reproductive traits. Whereas a reproductive increase through individual heterosis was primarily due to improved lamb survival (\( h^1 = 10\% \)), the main component of maternal heterosis in reproduction is the superior fertility, i.e., reduced barrenness, of crossbred ewes (\( h^m = 9\% \)). The highest heterosis estimates in fertility have been found in young ewes. It seems, therefore, that the maternal heterosis for fertility includes some gain from heterosis in sexual maturity.

Compared with the mean maternal heterosis for fertility, that for lamb survival and prolificacy is rather low (2.7% and 3.2% respectively). The relatively low heterosis

**Table 1. Maternal and Individual heterosis from crossbreeding experiments.**

<table>
<thead>
<tr>
<th>Trait</th>
<th>Cross vs. Pure</th>
<th>F1 vs. F2</th>
<th>Individual Heterosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of exp.</td>
<td>%</td>
<td>No. of exp.</td>
</tr>
<tr>
<td>Birth weight of lambs</td>
<td>12</td>
<td>5.1</td>
<td>1</td>
</tr>
<tr>
<td>Weaning weight of lambs</td>
<td>27</td>
<td>6.3</td>
<td>1</td>
</tr>
<tr>
<td>Ewe body weight</td>
<td>22</td>
<td>5.0</td>
<td>4</td>
</tr>
<tr>
<td>Fleece weight</td>
<td>14</td>
<td>13.4</td>
<td>3</td>
</tr>
<tr>
<td>Fertility</td>
<td>30</td>
<td>8.7</td>
<td>3</td>
</tr>
<tr>
<td>Ovulation rate</td>
<td>4</td>
<td>2.0</td>
<td>3</td>
</tr>
<tr>
<td>Prolificacy</td>
<td>31</td>
<td>3.2</td>
<td>3</td>
</tr>
<tr>
<td>Survival rate</td>
<td>25</td>
<td>2.7</td>
<td>3</td>
</tr>
<tr>
<td>Lamb born/ewe exposed</td>
<td>25</td>
<td>11.5</td>
<td>4</td>
</tr>
<tr>
<td>Lamb reared/ewe exposed</td>
<td>25</td>
<td>14.7</td>
<td>4</td>
</tr>
<tr>
<td>Total weight of lamb reared per ewe exposed</td>
<td>23</td>
<td>18.0</td>
<td>1</td>
</tr>
</tbody>
</table>
in prolificacy agrees with the results of the few experiments involving ovulation rate, which is the main component of litter size in sheep. Ovulation rate in sheep seems to be inherited additively. The published results indicate that heterosis for ovulation rate in sheep is about zero, and slightly negative rather than positive ($h^2 = -2\%$).

As for the estimates of individual heterosis, the variation of maternal heterosis is higher for reproductive traits than for lamb growth. Again, the estimates for fertility show the greatest variation. For fleece weight, the variation is similarly high, and the average heterosis is higher than one would expect for such a trait.

**Compound traits**

The cumulative effect of maternal heterosis is considerable for compound traits such as the total weight of lambs weaned per ewe exposed, maternal heterosis equals individual heterosis (approximately 18% each).

The same trend of values obtained by crossbred vs. purebred method was confirmed by the $F_2$ vs. $F_1$ method. This latter method is preferred in such cases when crossbreeding is planned with widely different breeds as often happen with sheep. One of the parental populations could be unsuited to the environment in which the animals are tested. But for animals having only 50% of genes from these extreme populations the testing environment may be sufficient to allow full expression of their potential.

The next step is how to benefit from maternal and other types of heterosis. Crossbreeding systems which involve the use of crossbred ewes will surely benefit from maternal heterosis. The optimum system is to use crossbred dams and sires from a third breed, thus taking advantage of maternal heterosis of the ewe and individual heterosis of the lamb. This system, however, requires keeping purebred populations to replace the crossbred ewes. This problem can be avoided by using a rotational 2, 3 or 4 breed crossing system. Although the heterosis in this system will be somewhat less, the need for keeping the purebred population is eliminated.

It can be concluded that heterosis is a free gift which every breeder should use for his benefit.

This article was adapted from a publication entitled "Breed utilization for meat production in sheep" by G. Nitter, published in Animal Breeding Abstracts, vol 46, pages 131-143.